Besov spaces on fractals

Besov spaces on fractals

Trace theorems and measures on arbitrary closed subsets of n-space

LAP Lambert Academic Publishing ( 29.10.2010 )

€ 59,00

Купить в магазине MoreBooks!

A physical state in a domain is often described by a model containing a linear partial differential equation. As an example of this, consider the steady state temperature distribution in a homogenous isotropic body. The problem, called Dirichlet''s problem, is to find a function u, given that ∆u=f in the interior of the body and u=g on the surface (where ∆u denotes the laplacian of u). The solution depends on f and g, but also on the geometry of the surface S. If the given functions f and g, as well as the subset S of 3-space, are smooth enough, then there exists a unique solution. However, since there are numerous non-smooth structures in nature, it is clear that the study of Dirichlet''s problem in the case when f, g and S are less smooth becomes an important task. Function spaces defined on subsets of n-space originates from the study of Dirichlet''s problem in the non-smooth case of f, g and S. An important class of functions in this respect are Besov spaces, defined in n-space in the 60''s. In the 80''s Besov spaces were extended to d-sets, typically fractal sets with non-integer local dimension d. In this book we extend Besov space theory to sets with varying local dimension.

Детали книги:

ISBN-13:

978-3-8433-6963-3

ISBN-10:

3843369631

EAN:

9783843369633

Язык книги:

English

By (author) :

Per Bylund

Количество страниц:

124

Опубликовано:

29.10.2010

Категория:

Математика